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In this paper, the characteristics of vibrational power #ow in an in"nite elastic circular
cylindrical shell "lled with #uid are investigated. The FluK gge thin shell theory and Helmholtz
equation are employed respectively in analyzing the wave motion in the shell wall and the
sound "eld in the #uid. The coupling condition on the inner surface of the shell wall is
introduced to obtain the vibrational equation of this coupled system. By using Fourier
transform and its inverse transform, the input power into the coupled system excited by
a driving force is studied. Along the shell axial direction, the transmission of the power #ow
carried by di!erent internal forces of the shell wall and by the #uid is also studied. The results
show that the input power #ow and the power #ow transmission depend mainly upon the
characteristics of the free propagating waves in this coupled system.

( 2000 Academic Press
1. INTRODUCTION

The vibration problem of #uid-"lled shell systems is very important in many "elds. The
vibration not only causes the pollution of noise, but also a!ects the work of the devices
which are mounted on the piping system. Hence, it is fundamental to investigate the
characteristics of dynamic response of the #uid-"lled shell system.

During recent years, a lot of attention has been paid to the coupled #uid}shell system.
Merkulov et al. [1] considered the problem of excitation of normal modes by a point source
located in the #uid contained in an elastic cylindrical shell. However, dispersion curves are
limited to the real and imaginary planes and a relatively thick shell was presented for modes
of circumferential order n"0, 1, or 2. Merkulov et al. [2], proceeded to brie#y study the
point-force excitation of this shell}#uid coupled system. Their results are solely concerned
with the relative transfer mobility of waves with varying branch and circumferential mode
number; near-"eld e!ects at the source necessary for the calculation of the input mobility
were not considered.

Fuller and Fahy [3] investigated the characteristics of free wave propagation in an
in"nite #uid-"lled cylindrical shell. Their work was concerned with the solution and
physical interpretation of the dispersion equation for the coupled system. Both dispersion
0022-460X/00/280387#17 $35.00/0 ( 2000 Academic Press
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behavior and energy distribution of free waves were investigated. The distribution of
vibrational energy between the shell wall and the #uid in the shell for free modes of
propagation was obtained and its variation with frequency and material parameters was
studied.

Pavic [4] gave the expression for the axial and the circumferential components of the unit
energy #ow along the shell wall in terms of the characteristic shell's components of the
motion. He analyzed the in#uence of the three di!erent terms contributing to the total
energy #ow and pointed out that the three terms exhibit considerable variations in
contributing the total energy #ow. Pavic [5] also investigated the wave motion and
vibroacoustical energy #ow through a #uid-"lled pipe. The expressions of the energy #ow in
the wall and the #uid were given from the surface vibration and can be simpli"ed at lower
frequencies . Hence, the measurements of energy #ow can be obtained by detection of
surface vibrations only.

Based on FluK gge's equation of motion and expressions for the total energy density in the
shell, Williams [6] gave a rigorous derivation of the structural intensity for a thin cylindrical
shell. The structural intensity vector is composed of "ve terms and simple physical
interpretations of these "ve terms were presented in the article. A numerical model of
a simply supported, point-driven, external #uid loading cylindrical shell existing in an
in"nite rigid ba%e was studied.

Langley [7] studied the vibrational energy #ow in a thin cylindrical shell, which is
associated with helical wave motion. An approximate technique based on a well-known
approximation to the dispersion relation was presented. A simple closed-form expression
for the group velocity and the direction of the energy #ow was given as a function of the
helical wave angle by this method. The results show that the direction of the energy #ow can
di!er signi"cantly from the helical wave angle and a negative group velocity in the
circumferential direction may arise in certain cases.

Fuller [8, 9] investigated the forced input mobility from an external force and the
response due to an internal monopole source for a #uid-"lled shell. However, the energy
transmission along the shell axial direction was not given. Brevarts and Fuller [10]
investigated further the e!ect of an internal #ow on the dynamic behavior of an in"nite
elastic shell "lled with #uid. The e!ect of upstream and downstream convections on the
ratio of vibrational energy in the shell and #uid media for free waves was studied. Perhaps
due to the complexity, the solution of the dispersion equation was limited to real roots for
various circumferential mode numbers.

Zhang and Zhang [11, 12] studied the input vibrational power #ow from an external
force into a shell in vacuo. The power transmitted by di!erent internal forces of the shell wall
was derived and its variation with frequency and the shell axial distance was also studied.

James [13] studied the forced vibration of a #uid-"lled pipe. The excitation considered in
the paper was either an internal point source in the (contained) #uid or a mechanical point
force located on the wall of the pipe. The acoustic power radiated into the exterior #uid, the
vibration response of the shell wall, and the pressure in the exterior and interior #uids were
calculated by a simple integration scheme. Numerical results were presented for the case of
a water-"lled steel pipe surrounded by air.

Feng [14] studied the acoustic properties of an in"nite, #uid-"lled shell. The relation
between radiated sound power and the system power distribution for a single mode was
analyzed in the paper. The results demonstrated that whether coupling with #uid increases
or decreases the pipe response, and hence noise power, is largely dependent on the
frequency range and on the way of excitation. Feng [15] found that there is a large
discrepancy between lossless theory and experiments on vibration and noise levels of
a water-"lled elastic shell at high frequencies. This problem was investigated theoretically
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and absorption due to the mixture layer on the inner wall of the shell was taken into
account. The layer was treated as a special coupling layer with high damping, and the shell
and the water were still treated as lossless. Numerical predictions were compared with the
experimental measurements and good agreement was found.

Xu and Zhang [16] studied the forced vibrational power #ow from a line circumferential
cosine harmonic force into an in"nite elastic circular cylindrical shell "lled with #uid. An
integrated numerical method along the pure imaginary axis of the complex wavenumber
domain was used to analyze the response of the coupled shell}#uid system. Xu et al. [17]
studied a #uid-"lled cylindrical shell comprising a wall joint. The transmission loss through
the wall joint was studied and an analysis of power #ow transmission and re#ection at the
wall joint was presented. Xu et al. [18] considered an in"nite cylindrical #uid-"lled shell
with periodic sti!eners. The input power #ow from an external line force was studied and
a periodic structural theory, space harmonic anlaysis was employed to investigate this
#uid-coupled periodic structure. The in#uence of the parameters of the sti!eners upon the
input power #ow was discussed in this paper.

From the above, we can draw the conclusion that much attention has been paid to the
free vibration of the #uid-"lled shell system. As to force vibration, only the input power #ow
was given. The purpose of the present paper is to study further the forced vibrational power
#ow of an in"nite elastic circular cylindrical shell "lled with #uid. The FluK gge thin-shell
theory and the Helmholtz equation are employed respectively, in analyzing the wave
motion in the shell wall and #uid contained in the shell. The vibrational equation is
obtained by using the coupling condition of the shell}#uid system. The dynamic response of
the coupled system to a circumferential line cosine harmonic force is derived and the results
are obtained by using the method of residues. The vibrational power #ow theory is
introduced to study the dynamic response of this coupled system. In particular, the
transmitted power #ow along the shell axial direction carried by di!erent internal forces
(moment) of the shell wall and by the #uid will be analyzed, and its variation with frequency
will also be discussed.

2. FREE WAVE PROPAGATION

Consider the free vibration behavior of an in"nite circular cylindrical elastic shell "lled
with #uid. The co-ordinate system and the modal shapes are shown in Figure 1. The #uid is
assumed to be viscous, isotropic and irrotational. The free, simple harmonic vibration of
a thin-walled cylindrical shell is described by the FluK gge thin-shell theory and the wave
equation for the #uid is described by the Helmholtz equation [20, 22]
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Figure 1. Coordinate system and modal shapes
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The normal mode shapes assumed for the displacements of the shell wall and the pressure
"eld in the contained #uid, associated with an axial wavenumber k
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, are expressed as
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Application of the #uid momentum equation at the shell wall, r"R, produces

P
ns
"[u2o

f
/kr

s
J@
n
(kr

s
R)]=

ns
. (6)

where Jn( ) is Bessel function of order n [21].
Substitution of equations (5) and (6) into the shell equations results in the equations of

motion of the coupled system, represented in matrix form as
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where the elements of matrix ¸3]3 are not given here for the sake of brevity.
The equations governing the motion of this coupled system di!er from the in vacuo shell

equations [11] by the presence of the #uid-loading term F¸, which can be obtained from the
boundary condition of the shell wall and is given by [3]
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Expansion of the determinant of the amplitude coe$cient in equations (7) provides the
characteristic equation of this coupled system, expressed as
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(j) are polynomials of j. For the sake of brevity, the coe$cients are

not given here.
Due to the &&non-linearity'' of the characteristic equation, numerical methods have to be

employed to "nd the desired eigenvalues k
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. The eigenvalues will be either pure real, pure
imaginary or complex. The pure real and imaginary roots can be found by the method of
bisection. Newton's downhill method and plane grille searching method can be combined to
"nd the complex roots.
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The characteristic vectors U
ns

and W
ns

characterize the particular type of the wave motion,
giving the ratio of the longitudinal and circumferential displacements to the #exural
displacement.

3. FORCED VIBRATION

We now analyze the response of the shell}#uid coupled system to an external line force,
applied around the circumference at x"0,

F(h, t)"F
0
cos(nh)d(0) exp(iut). (11)

The forced vibration of the shell and the #uid are described as
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Taking Fourier transform of equations (11, 12) and applying the boundary condition give
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where;I , <I and=I are the spectral displacements of the shell; the elements of matrix ¸ are
the same as those of the matrix in equation (7) and hence are not given here for brevity.

Let matrix I be the inverse of matrix ¸. Thus, the solution of equation (15) can be
obtained as

;I

<I

=I

"

I
11

I
12

I
13

I
21

I
22

I
23

I
31

I
32

I
33

0

0

X2F
0
/(2no

s
hu2)

, (16a)

;I

<I

=I

"X2F
0
/(2no

s
hu2)

I
13

I
23

I
33

, (16b)

where the elements of matrix I
3]3

can be easily obtained in terms of the elements of matrix
¸
3]3

as

I
13
"(¸

12
¸
23
!¸

12
¸
31

)/(det D¸ D ),

I
23

"(¸
12

¸
13
!¸

11
¸
32

)/(det D¸ D ) , (17)

I
33
"(¸

11
¸
22
!¸

12
¸
21

)/(det D¸ D ).



392 M. B. XU AND W. H. ZHANG
Application of the inverse transform of equation (16) gives the shell displacements as
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Once the integrals in equation (18) are solved, the shell displacements can be easily
obtained. The form of equations (17) means that the complex integrals in equation (18) can
be obtained by using the method of residues. The poles contained in the contour will be at
the locations of the roots of characteristic equation det D¸ D"0, i.e., the free wavenumbers
discussed in section 2.

The complex integrals can be written as
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The displacements of the shell wall can be obtained from equations (18, 19) and expressed as
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The radial displacement of the shell wall at x"0 is
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In equations (20, 21), there are in"nite poles, i.e., free wavenumbers, which have to be
simpli"ed. In the paper, all the propagating waves and attenuated standing waves are
considered; as to near-"eld waves, only those with small wavenumbers are included. The
characteristics of residues of di!erent waves have been discussed in reference [20] and are
not given here for the sake of brevity.

Once the displacements of the shell wall are obtained, the pressure of the #uid contained
in the shell at any point (x, r, h) can be easily solved from the #uid}shell coupling condition.

4. POWER FLOW INPUT AND TRANSMISSION

The noise control and vibration reduction method depends upon the nature of the
vibration, and thus it is of prime importance to predict the characteristics of vibration
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power #ow. In this section, the forced vibration power #ow input into the coupled system
and transmission along the shell axial direction will be discussed.

4.1. VIBRATIONAL POWER FLOW INPUT

When an external line force F(h, t)"F
0

cos(nh)d(0) exp(iut) is applied radially on the
wall of the #uid-"lled shell, the radial displacement of the shell wall at x"0 can be obtained
from equation (21). Then the input power #ow from this driving force is de"ned as follows
[11]:
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The non-dimensional power #ow is de"ned as
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4.2. INPUT POWER FLOW DUE TO A SINGLE PROPAGATING WAVE

In order to discuss the characteristics of di!erent propagating waves, the input power
#ow due to a single propagating wave is investigated.

The radial displacement at x"0 due to a single propagating wave is de"ned as
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Then the input power #ow due to a single propagating wave is de"ned as
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4.3. POWER FLOW TRANSMISSION ALONG THE SHELL AXIAL DIRECTION

When an external force is applied on the shell wall, the forced vibration waves will
propagate in the shell}#uid coupled system, and thus the input power #ow will also be
transmitted along the shell axial direction. At any interfaces x"¸, the shell displacements
u(x), v(x), w (x) and slope Lw(x)/Lx of the shell wall can be solved from equation (20).
Meanwhile, there will be four internal forces (moments) of the shell wall in the axial
direction, which can be easily derived from FluK gge's thin-shell theory [19]. These forces



394 M. B. XU AND W. H. ZHANG
(moments) can be written as the functions of the shell displacements and slope, expressed as
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where N (x) , ¹(x) , S (x) and M(x) are the axial force, torsional shear force, transverse shear
force and bending moment in the x direction respectively.

In the section x"¸ of the shell wall, the vibrational power #ow transmitted by these
forces (moment) are respectively expressed as
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The total vibrational power #ow in the shell wall is the sum of the power #ow carried by
these shell internal forces (moment) and expressed as
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The vibrational power #ow carried by the #uid P
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will be obtained from the
vibrational power #ow in the shell wall. The total power #ow of the system P
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According to symmetry, as the forced power #ow is input into this coupled shell}#uid
system, half of the input power will be transmitted in the positive direction of the shell axial
and the other half will be transmitted in the negative direction. Thus, the total power of the
system at the section x"¸ is
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From equations (30) and (31), the vibrational power #ow carried by the contained #uid
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can be obtained as
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Once these types of vibrational power #ow are given, the ratios of the power #ow carried
by di!erent shell internal forces (moment) to the total power in the shell wall can be
obtained, and thus the characteristics of shell motion will be interpreted from the point of
energy. Meanwhile, the degree to which the energy is concentrated in the contained #uid or
in the shell wall can also be analyzed in the same manner.

5. RESULTS AND DISCUSSIONS

A cylindrical shell "lled with #uid will be considered as a numerical example model. The
following parameters of this coupled shell are used in the calculations: h/R"0)05, k"0)3,
o
s
"7800 kg/m3 and E"1)92]1011 N/m2; the #uid has the density o

f
"1000 kg/m3 .

5.1. VIBRATIONAL POWER FLOW INPUT

The #uid-"lled shell is excited by a line circumferential cosine harmonic force of
circumferential mode order n"0, 1, 2 and 3. Figure 2 shows the non-dimensional input
power #ow P@

input
plotted against non-dimensional frequency X. In order to investigate the

in#uences of the contained #uid, the results for the same shell vibrating in vacuo are also
plotted.
Figure 2. Non-dimensional input power #ow into a shell: (a) n"0, (b) n"1, (c) n"2, (d) n"3. ** ,
Water-"lled shell; -----------, shell in vacuo.
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From the results in Figure 2 and the dispersion curves in reference [3], the following
conclusions can be drawn. When n"0, the existence of the #uid increases the input power
#ow into the coupled system at low frequencies (X(1)0). The reason can be obtained from
the characteristics of the free vibrational propagating waves. For the #uid-"lled shell, there
are two propagating waves, one of which corresponds to the #uid wave in a rigid-walled
duct, the other to the extensional wave in the shell in vacuo. For the shell in vacuo, there
exists only the propagating wave, the motion of which is mainly in the axial direction, while
the external force is applied in the radial direction. Thus, the #uid contained in the shell has
the e!ect of increasing the input power in these circumstances.

When n'0, at low frequencies (X(0)7), the di!erence in input power between
#uid-"lled shell and a shell in vacuo is negligible. The reason for this is that in a #uid-"lled
shell, there exists only one propagating wave, which corresponds to the propagating wave in
a shell in vacuo. Thus, the e!ect of the #uid on the input power is insigni"cant in this
condition.

At middle frequencies (1)0(X(2)0), to any circumferential mode orders, the result for
a shell in vacuo is much larger than that for a #uid-"lled shell. The reason is that the shell
in vacuo vibrates resonantly with the external force, while the #uid contained in the shell has
the e!ect of reducing the resonant response.

At high frequencies (X'2)0), for any circumferential mode orders, the di!erence in input
power #ow between a shell "lled with #uid and a shell in vacuo is negligible except in
frequency ranges near the peaks. Furthermore, the results for di!erent circumferential mode
orders are almost the same.

By comparing the input power with the dispersion curves, it is found that the frequencies
of the peaks in the input power curve correspond to the cut-on frequencies of the
propagating waves in the dispersion curves. When circumferential mode order n is large,
because there are no propagating waves in the coupled system at low frequencies, the power
#ow is not input into the system by the external force.

In order to investigate the e!ect of the attenuated standing waves and the near-"eld
waves on the input power #ow, the complex integral in equation (18) is calculated only by
using the residues of propagating waves. The results agree well with those calculated by the
residues of all waves. In fact, the near-"eld waves only a!ect the phase of the displacements
at the driving place, and so they do not have an e!ect on the results of input power #ow. The
attenuated standing waves always exist in pairs, one of which increases the input power,
while the other decreases it, and so a pair of attenuated standing waves does not change the
input power #ow at all.

5.2. INPUT POWER FLOW DUE TO A SINGLE PROPAGATING WAVE

Figure 3 shows the non-dimensional input power #ow due to a single propagating wave
into a shell "lled with #uid P@

s
plotted against non-dimensional frequency X. From the

results and the dispersion curves, the following conclusions can be drawn.
When n"0, the input power due to the s"1 propagating wave (cut-on frequency is

X
s/1

"0) P@
s/1

is almost the total power #ow is the entire frequency-range. Moreover,
P@
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has a peak at the third propagating wave's cut-on frequency X
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peak of the whole power #ow curves. At low frequencies, the power #ow corresponding to
the s"2 wave (cut-on frequency is X
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Figure 3. Input power #ow due to a single propagating wave into a #uid-"lled shell: (a) n"0, (b) n"1, (c) n"2,
(d) n"3. +++, s"1; ))))))))), s"2; } .} . } . } , s"3; **, s"4.
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corresponds to X
s/3

and the other corresponds to X
s/4

. Apart from the frequencies near
the peaks, P@

s/3
is almost unnoticeable. The characteristics of the input power #ow due to

the propagating waves s"4, 5, 6,2 are similar to those of the wave s"3.
The reason for the characteristics of the input power #ow is given as follows. At low

frequencies, the wave s"1 is close to a #uid wave in a rigid-walled tube, which moves
mainly in the radial direction; hence its input power #ow is big. Moreover, the type of the
wave motion changes near X

s/2
, which corresponds to the peak of the input power P@

s/1
.

The motion of the wave s"2 is mainly in the axial direction at low frequencies, which
makes the input power P@

s/2
very small. Near the frequency X

s/3
, the motion of the wave

s"2 changes into the motion in the radial direction to a great extent, and so P@
s/2

has
a peak at X

s/3
. The character of the wave s"3 changes quickly near its own cut-on

frequency X
s/3

and the next wave's cut-on frequency X
s/4

, and so the input power #ow
corresponding to the s"3 wave P@

s/3
has two peaks just near these frequencies.

The results for n'0 are similar to those for n"0 except some small di!erences. The
input power #ow due to the waves s"3, 4, 52 has three peaks. For instance, the input
power #ow corresponding to the s"3 wave P@

s/3
has three peaks at its own cut-on

frequency X
s/3

, the next two waves' cut-on frequency X
s/4

and X
s/5

. Apart from these
three frequency ranges, P@

s/3
is unnoticeable. The reason for the results is that the motion of

the wave changes greatly near these three frequencies.
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The results for a shell vibrating in vacuo are similar to those of a shell "lled with #uid. The
input power due to the wave s"1 is the main part of the whole power, while the input
power due to the wave s"2, 3 is insigni"cant except the regions near the propagating
waves' cut-on frequencies. The results are shown in Figure 4.

5.3. POWER FLOW TRANSMISSION ALONG THE SHELL AXIAL DIRECTION

The vibration power #ow transmission along the axial direction will be discussed in the
section. The variations of P@

Shell
"P

Shell
/P

total
, P@

Fluid
"P

Fluid
/P

total
and the variations of

P@
N
"P

N
/P

Shell
, P@

T
"P

Y
/P

Shell
, P@

S
"P

S
/P@

Shell
, P@

M
"P

M
/P

Shell
with non-dimensional distance

¸/R are investigated for di!erent circumferential mode orders n and di!erent
non-dimensional frequencies X .

Figure 5 shows di!erent power #ows in the coupled system, P@
Shell

and P@
Fluid

, plotted
against shell axial distance ¸/R for a #uid-"lled shell. The following conclusions can be
drawn.

At the driving point ¸/R"0, for any circumferential mode order n and non-dimensional
frequencies X , P@

Shell
"1 and P@

Fluid
"0. When ¸/R increases, P@

Shell
will change to P@

Fluid
.

At low frequencies (X"0)3), the variations of P@
Shell

and P@
Fluid

are slow. For
circumferential mode order n"0, P@

Shell
@P@

Fluid
. The reason is that the only important
Figure 4. Input power #ow due to a single propagating wave into a shell in vacuo: (a) n"0, (b) n"1, (c) n"2,
(d) n"3. **, s"1; )))))))))), s"2; } .} . } . } , s"3.



Figure 5. Power #ow transmitted by the shell or by the #uid: (a) n"0, X"0)3; (b) n"0, X"1)2; (c) n"0,
X"3)0; (d) n"1, X"0)3; (e) n"1, X"1)2; (f ) n"1, X"3)0; **, By the shell; ))))))))))), by the #uid.
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propagating wave in the coupled system is #uid type; For circumferential mode order
n"1, the di!erence between P@

Shell
and P@

Fluid
is small, which means a strong #uid}shell

coupling.
At middle or high frequencies (X"1)2 or 3)0), for any circumferential mode order n, both

P@
Shell

and P@
Fluid

are the &&periodic'' functions of distance ¸/R. The reason is that the e!ect of



Figure 6. Power #ow transmitted by the interanal forces of the shell wall: (a) n"0, X"0)3; (b) n"0, X"1)2;
(c) n"0, X"3)0; (d) n"1, X"0)3; (e) n"1, X"1)2; (f ) n"1, X"3)0; )))))))))), P@

N
; } .} . } . } , P@

T
; +++, P@

S
;**, P@

M

400 M. B. XU AND W. H. ZHANG
the attenuated standing waves and the near-"eld waves is very small and thus the motion of
the coupled system changes &&periodically'' along the shell axial direction.

Figure 6 shows the power #ow transmitted by di!erent internal forces (moment) of the
shell wall, P@

N
, P@

T
, P@

S
and P@

M
plotted against axial distance ¸/R for the coupled system. The

following conclusions can be drawn.
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For circumferential mode order n"0 (breathing mode), because the torsional motion is
uncoupled with other motions, P@

Shell
"P@

N
#P@

S
#P@

M
. For circumferential mode order

n"1 (bending mode), P@
Shell

"P@
N
#P@

T
#P@

S
# P@

M
.

At the driving point ¸/R"0, for any circumferential mode order n and non-dimensional
frequencies X , P@

S
"1)0. As ¸/R increases, P@

S
changes into other types of power #ow.

At low frequencies (X"0)3), for circumferential mode order n"0, P@
S
#P@

M
@P@

N
, the

shell motion is predominately extensional; for circumferential mode order n"1,
P@
S
#P@

M
@P@

N
#P@

T
, the motion is mainly in the torsional and extensional directions. At

middle and high frequencies (X"1)2 or 3)0), for any circumferential mode order n,
P@
S
#P@

M
AP@

N
and P@

S
#P@

M
AP@

T
; the motion of the shell wall is mainly in the radial

direction. For all frequencies X and circumferential mode orders n, P@
S
+P@

M
; the power

transmitted by the transverse shear force equals that transmitted by the bending moment.
The results for a shell in vacuo are given in reference [11]. By comparing the results of

a shell "lled with #uid with those of a shell in vacuo, the following conclusions can be drawn.
For a shell in vacuo, the variation of power #ow transmitted by di!erent forces (moment) of
the shell wall is unnoticeable after a distance; for a shell "lled with #uid, and middle or high
frequencies, the power #ow carried by di!erent shell forces (moment) is the &&periodic''
function of distance ¸/R, but the variation amplitude is much smaller than that of P@

Shell
and

P@
Fluid

.

6. CONCLUSIONS

The forced vibration of an in"nite elastic circular cylindrical shell "lled with #uid is
investigated in this paper. By analyzing the vibrational power #ow input from an external
force and the transmission along the shell axial direction, the following conclusions can be
drawn.

(1) The input power #ow depends upon the characteristics of free wave propagation to
a great extent. The peak frequencies in the input power #ow spectrum correspond to the
cut-on propagating waves shown in the dispersion curves of the system. Both the residue of
near-"eld waves and that of a pair of attenuated standing waves do not change the input
power #ow at all. Only those of the propagating waves in#uence the results of the input
power. The input power #ow due to di!erent single propagating waves is di!erent. The
input power due to the s"1 wave is almost the total power #ow for the entire frequency
range. The input power #ow due to other propagating waves is almost unnoticeable except
near its own cut-on frequency and the next one or two propagating waves' cut-on
frequencies, where the input power #ow is signi"cant.

(2) The power #ow transmitted along the shell's axial direction depends greatly upon the
characteristics of the free propagating waves. At low frequencies, the variation of di!erent
power #ows with the distance is slow. For n"0, the power #ow in the coupled system is
predominantly carried by the motion of #uid; the power #ow in the shell all is
predominantly carried by the the motion in the axial direction. For n'0, the power #ow in
the coupled system is mainly carried by the motion of the shell wall and the power in the
shell is mainly carried by the motion in the axial and circumferential directions. At middle
or high frequencies, the variation of the power #ow is large and the power carried by the
#uid motion is less than that carried by the shell motion. The power #ow carried by di!erent
forces (moment) in the shell wall also changes with distance, but the variation amplitudes
are much smaller. Most of the power #ow in the shell wall is carried by the #exural motion;
the power #ow carried by the motion in the axial or circumferential direction is
unimportant.



402 M. B. XU AND W. H. ZHANG
ACKNOWLEDGMENTS

The authors are grateful for the "nancial assistance provided by the National Natural
Science Foundation of China (Grant No. 19404005).

REFERENCES

1. V. N. MERKULOV, V. YU, PRIKHODKO and V. V. TYUTEKIN 1979 Soviet Physics-Acoustics 25,
51}54. Normal modes in a thin cylindrical elastic shell "lled with #uid and driven by forces
speci"ed on its surface.

2. V. N. MERKULOV, V. YU. PRIKHODKO and V. V. TYUTEKIN 1978 Soviet Physics-Acoustics 24,
405}409. Excitation and propagation of normal modes in a thin cylindrical elastic shell "lled with
#uid.

3. C. R. FULLER and F. J. FAHY 1982 Journal of Sound and <ibration 81, 501}518. Characteristics of
wave propagation and energy distributions in cylindrical elastic shells "lled with #uid.

4. G. PAVICR 1990 Journal of Sound and <ibration 142, 293}310. Vibrational energy #ow in elastic
circular cylindrical shells.

5. G. PAVICR 1992 Journal of Sound and <ibration 154, 411}429. Vibroacoustical energy #ow
through straight pipes.

6. E. G. WILLIAMS 1991 Journal of Acoustical Society of America 89, 1615}1622. Structural intensity
in thin cylindrical shells.

7. R. S. LANGLEY 1994 Journal of Sound and <ibration 169, 29}42. Wave motion and energy #ow in
cylindrical shells.

8. C. R. FULLER 1983 Journal of Sound and <ibration 87, 409}427. The input mobility of an in"nite
circular cylindrical elastic shell "lled with #uid.

9. C. R. FULLER 1986 Journal of Sound and <ibration 109, 259}275. Radiation of sound from an
in"nite cylindrical elastic shell excited by an internal monopole source.

10. B. J. BREVART and C. R. FULLER 1993 Journal of Sound and <ibration 163, 149}163 E!ect of an
internal #ow on the distribution of vibrational energy in an in"nite #uid-"lled thin cylindrical
elastic shell.

11. X. M. ZHANG and W. H. ZHANG 1990 Proceedings of ASME P<P, Nashville ;.S.A. Vibrational
power #ow in a cylindrical shell.

12. W. H. ZHANG and X. M. ZHANG 1991 Proceedings of ASME P<P, Atlanta, ;.S.A. Vibrational
power #ow in a cylindrical shell with periodic sti!eners.

13. J. H. JAMES 1982 Admiralty Marine ¹echnology Establishment, ¹eddington, May. AM¹E(N)
¹M82036, Computation of acoustic power, vibration response and acoustic pressure of
#uid-"lled pipes.

14. L. FENG 1994 Journal of Sound and <ibration 176, 399}415. Acoustic propagaties of #uid-"lled
elastic pipes.

15. L. FENG 1995 Journal of Sound and <ibration 183, 169}178. Noise and vibration of a #uid "lled
elastic pipe coated with an absorptive layer on the inner side of the wall.

16. M. B. XU, X. M. ZHANG 1998 Journal of Sound and <ibration 218, 587}598. Vibration power #ow
in a #uid-"lled cylindrical shell.

17. M. B. XU, X. M. ZHANG and W. H. ZHANG 1999 Journal of Sound and <ibration, 224, 395}410.
The e!ect of wall joint one the vibrational #ow propagation in a #uid-"lled shell.

18. M. B. XU, X. M. ZHANG and W. H. ZHANG 1999 Journal of Sound and <ibration 222, 531}546.
Space-harmonic analysis of input power #ow in a periodically sti!ened shell "lled with #uid.

19. W. FLUG GGE 1973 Stress in Shells. New York: Springer-Verlag.
20. M. B. XU 1999 Ph.D. dissertation, Huazhong ;niversity of Science and ¹echnology, Wave

propagation and power #ow in a cylindrical shell-#uid coupled system.
21. N. W. MCLACHLAN 1934 Bessel Functions for Engineers. London: Oxford University Press.
22. P. M. MORSE and K. U. INGARD 1968 ¹heoretical Acoustics. New York: McGraw-Hill.

APPENDIX A: LIST OF SYMBOLS

E Young's modulus
F external force



CIRCULAR CYLINDRICAL SHELL 403
F¸ #uid-loading term
h shell wall thickness
i J!1
J
n
( ) Bessel function of order n

k
ns

axial wavenumber
kr
s

radial wavenumber
n circumferential mode number
N, ¹, S, M axial force, torsional shear force, transverse shear force and bending moment of the

shell wall in the shell axial direction
p
f

pressure in the contained #uid
P
input

input power #ow
P
Shell

power #ow transmitted by the shell wall
P
Fluid

power #ow transmitted by the contained #uid
P
N
, P

T
, P

S
, P

M
power #ow carried by the shell force: N, ¹, S, M

P@ non-dimensional input power #ow
R shell mean radius
s branch number
u, v, w shell displacements
;

ns
, <

ns
,=

ns
shell displacement amplitudes

;I , <I ,=I spectral displacements of the shell wall
o
f

density of #uid
o
s

density of shell
k Poisson's ratio
u circular frequency
X non-dimensional frequency
j non-dimensional axial wavenumber
U

ns
, W

ns
characteristic vector

d Dirac delta function

Superscripts
* complex conjugate
@ di!erentiation
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